Graph Densification

Moritz Hardt (IBM Almaden),
Nikhil Srivastava (Princeton),
Madhur Tulsiani (TTI Chicago)
Which graphs have a dense approximation?
Graph densification

Given: Graph G

Find: Graph H such that

- H is denser than G
- H is a cut/spectral approximation of G
But... Why?

• Natural question about graphs
 – Which graphs are intrinsically sparse?
• Inverse of *Graph Sparsification*
 – Lots of recent work [BK,ST,SS,BSS,FHHP,KMP,...]
• Connection to Dense Model Theorem
 [GT,RTTV,TTV,...]
• New algorithms?
 – Max-Cut has PTAS on dense graphs [FK,GGR,...]
• Leads to interesting characterization
Main conceptual message

Either:

Densifier

G has non-trivial cut densifier

Or:

Embedding

G admits a weak embedding into ℓ^1

Example:
Expander graph does not embed into ℓ^1 [LLR], has densifier (complete graph)

#biwinning
Graphs are allowed to have edge weights in $[0,1]$

Density = sum of edge weights

Def. H is a one sided C-multiplicative cut approximation of G if for every S:

$$e_H(S, S^C) \leq C \cdot e_G(S, S^C)$$

Short: C-approximation

Really, there are six natural notions here:

one/two-sided, additive/multiplicative, spectral/cut

Note: Spectral stronger than cut
Recap: Metrics

Cut metric:
\[\delta_S(u, v) = \begin{cases} 1 & \text{if } |\{u, v\} \cap S| = 1 \\ 0 & \text{o.w.} \end{cases} \]

\[\ell_1 \text{-metric:} \quad \rho = \sum_S \lambda_S \delta_S, \quad \lambda_S \geq 0 \]

Graph metric:
\[d_G(u, v) = \text{shortest path between } u \text{ and } v \text{ in } G \]
Results

Theorem:
A graph G has a C-approximation of density αn^2 iff G does not have an (α, C)-humble embedding into ℓ_1

Definition (humble):
\[
\ell_1\text{-metric } \rho \text{ s.t. } (1 - \alpha)n^2 \text{ pairs of vertices } (u, v) \text{ satisfy}
\]
\[
\rho(u, v) \geq C \cdot \mathbb{E}_{e \in G} \rho(e)
\]

Note: To rule out densifier, exhibit $(o(1), O(1))$-humble embeddings
Examples

Theorem:
Planar graphs have \((O(1/n), O(1)) \)-humble embeddings (and hence no non-trivial densifiers).

Theorem:
For every \(m \in [O(n), n^2] \), there is a random geometric graph with \(m \) edges that does not have an \(O(1) \)-approximation with density \(\Omega(mn^{0.01}) \).
Results (spectral)

Theorem:

G has one-sided C-multiplicative spectral approximation of density αn^2 iff G does not have an (α, C)-humble embedding into ℓ_2^2.

Theorem (cut vs spectral):

If G has a one-sided C-multiplicative *cut* approximation of density m, then G has a one-sided $1.01C^2$-multiplicative *spectral* approximation of density $\Omega(m)$.

Remark:

Can compute optimal spectral densifier efficiently via SDP (= approximately optimal cut densifier by Theorem)
(Non-)Results in additive case

• Embedding approach less fruitful

• Theorems:
 – Can compute optimal additive cut densifier efficiently (unlike in multiplicative case) via [AN]
 – Cycle does not have a densififer with 2n edges

• Remark: Dense Model Theorem [RTTV] classifies which graphs have additive cut densifiers with $\Omega(n^2)$ edges.
Some intuition
Suppose you have a bounded degree graph G that came with a non-contractive embedding ρ into ℓ^1 with small average stretch.

You also have an $O(1)$-approximation H

Claim: H can’t be very dense

Why?
Observation:
Few close pairs
Many far pairs

Goal:
Argue most edges in H
must be short!
Let’s bound

$$\frac{\sum_{(u, v) \in E_H} d_G(u, v)}{|E_H|}$$

Average distance in G of edges in H
Let's bound

$$\mathbb{E}_{(u,v) \in E_H} d_G(u, v) \leq \mathbb{E}_{(u,v) \in E_H} \rho(u, v)$$

(Average stretch)

Average distance in G of edges in H (non-contractive)
Let’s bound

\[\mathbb{E}_{(u, v) \in E_H} d_G(u, v) \leq \mathbb{E}_{(u, v) \in E_H} \rho(u, v) \]

(non-contractive)

\[= \mathbb{E}_{(u, v) \in E_H} \sum_S \lambda_S \delta_S(u, v) \]

(ell1)

Average distance in G of edges in H
Let’s bound

\[\mathbb{E}_{(u, v) \in E_H} d_G(u, v) \]

\[
\leq \mathbb{E}_{(u, v) \in E_H} \rho(u, v) \quad \text{(non-contractive)}
\]

\[
= \mathbb{E}_{(u, v) \in E_H} \sum_S \lambda_S \delta_S(u, v) \quad \text{(ell1)}
\]

\[
= \sum_S \lambda_S \mathbb{E}_{(u, v) \in E_H} \delta_S(u, v)
\]
Let’s bound

\[\mathbb{E}_{(u, v) \in E_H} \] \[d_G(u, v) \]

\[\leq \mathbb{E}_{(u, v) \in E_H} \rho(u, v) \] (non-contractive)

\[= \mathbb{E}_{(u, v) \in E_H} \sum_S \lambda_S \delta_S(u, v) \] (ell1)

\[= \sum_S \lambda_S \mathbb{E}_{(u, v) \in E_H} \delta_S(u, v) \]

\[= \sum_S \lambda_S e_H(S, S^c) \]
Let’s bound

\[\mathbb{E}_{(u, v) \in E_H} d_G(u, v) \]

\[
\leq \mathbb{E}_{(u, v) \in E_H} \rho(u, v) \quad \text{(non-contractive)}
\]

\[
= \mathbb{E}_{(u, v) \in E_H} \sum_S \lambda_S \delta_S(u, v) \quad \text{(ell1)}
\]

\[
= \sum_S \lambda_S \mathbb{E}_{(u, v) \in E_H} \delta_S(u, v)
\]

\[
= \sum_S \lambda_S e_H(S, S^c)
\]

\[
\leq C \sum_S \lambda_S e_G(S, S^c) \quad \text{(C-approximation)}
\]
Let’s bound

$$\mathbb{E}_{(u, \nu) \in E_H} d_G(u, \nu)$$

\[\leq \mathbb{E}_{(u, \nu) \in E_H} \rho(u, \nu) \quad \text{(non-contractive)} \]

\[= \mathbb{E}_{(u, \nu) \in E_H} \sum_S \lambda_S \delta_S(u, \nu) \quad \text{(ell1)} \]

\[= \sum_S \lambda_S \mathbb{E}_{(u, \nu) \in E_H} \delta_S(u, \nu) \]

\[= \sum_S \lambda_S e_H(S, S^c) \]

\[\leq C \sum_S \lambda_S e_G(S, S^c) \quad \text{(C-approximation)} \]

\[= C \mathbb{E}_{(u, \nu) \in E_G} \rho(u, \nu) \quad \text{(average stretch)} \]
Tight characterization

• Uses **LP/SDP duality**

• LP:
 – Objective: Max sum of edge weights of H
 – Constraints: H is a cut approximation of G
 – Variables: Edge weights of H

• SDP similar

• Dual program gives rise to humble embedding

• Cut vs spectral connection: Translate dual certificate from SDP to LP
Open problems

• Lack of understanding in the additive case
• Connection between cut/spectral multiplicative densifier in the two-sided case?
• Connection between densifiers and small set expansion?
• Killer application of densifier/embedding dichotomy?
Thank you

I still don't have all the answers. I'm more interested in what I can do next than what I did last.